Yoon Hee Choo 1, Moinay Kim 2, Jae Hyun Kim 2, Hanwool Jeon 2, Hee-Won Jung 3, Eun Jin Ha 4, Jiwoong Oh 5, Youngbo Shim 6, Seung Bin Kim 7, Han-Gil Jung 8, So Hee Park 9, Jung Ook Kim 10, Junhyung Kim 11, Hyeseon Kim 12, Seungjoo Lee 2
Abstract
The brain houses vital hormonal regulatory structures such as the hypothalamus and pituitary gland, which may confer unique susceptibilities to critical illness-related corticosteroid insufficiency (CIRCI) in patients with neurological disorders. In addition, the frequent use of steroids for therapeutic purposes in various neurological conditions may lead to the development of steroid insufficiency. This abstract aims to highlight the significance of understanding these relationships in the context of patient care and management for physicians. Neurological disorders may predispose patients to CIRCI due to the role of the brain in hormonal regulation. Early recognition of CIRCI in the context of neurological diseases is essential to ensure prompt and appropriate intervention. Moreover, the frequent use of steroids for treating neurological conditions can contribute to the development of steroid insufficiency, further complicating the clinical picture. Physicians must be aware of these unique interactions and be prepared to evaluate and manage patients with CIRCI and steroid insufficiency in the context of neurological disorders. This includes timely diagnosis, appropriate steroid administration, and careful monitoring for potential adverse effects. A comprehensive understanding of the interplay between neurological disease, CIRCI, and steroid insufficiency is critical for optimizing patient care and outcomes in this complex patient population.
Keywords: Adrenal insufficiency; CIRCI; Hypotension; Increased intracranial pressure; Neurocritical care; Traumatic brain injury.
Fig. 1.
Hypothalamic-pituitary-adrenal (HPA) axis regulation. This schematic diagram illustrates the key components and interactions within the HPA axis, highlighting the regulatory role of the hypothalamus, pituitary gland, and adrenal cortex in stress response and hormonal balance. The figure demonstrates the release of corticotropin-releasing hormone (CRH) from the hypothalamus, which triggers the secretion of adrenocorticotropic hormone (ACTH) from the anterior pituitary gland. Subsequently, ACTH stimulates the adrenal cortex to produce cortisol, the primary stress hormone. The HPA axis is regulated through a negative feedback loop, where increased cortisol levels inhibit the release of both CRH and ACTH, maintaining hormonal homeostasis.
Comments